craban/server/vendor/github.com/lann/ps/map.go

312 lines
7.1 KiB
Go
Raw Permalink Normal View History

// Fully persistent data structures. A persistent data structure is a data
// structure that always preserves the previous version of itself when
// it is modified. Such data structures are effectively immutable,
// as their operations do not update the structure in-place, but instead
// always yield a new structure.
//
// Persistent
// data structures typically share structure among themselves. This allows
// operations to avoid copying the entire data structure.
package ps
import (
"bytes"
"fmt"
)
// Any is a shorthand for Go's verbose interface{} type.
type Any interface{}
// A Map associates unique keys (type string) with values (type Any).
type Map interface {
// IsNil returns true if the Map is empty
IsNil() bool
// Set returns a new map in which key and value are associated.
// If the key didn't exist before, it's created; otherwise, the
// associated value is changed.
// This operation is O(log N) in the number of keys.
Set(key string, value Any) Map
// Delete returns a new map with the association for key, if any, removed.
// This operation is O(log N) in the number of keys.
Delete(key string) Map
// Lookup returns the value associated with a key, if any. If the key
// exists, the second return value is true; otherwise, false.
// This operation is O(log N) in the number of keys.
Lookup(key string) (Any, bool)
// Size returns the number of key value pairs in the map.
// This takes O(1) time.
Size() int
// ForEach executes a callback on each key value pair in the map.
ForEach(f func(key string, val Any))
// Keys returns a slice with all keys in this map.
// This operation is O(N) in the number of keys.
Keys() []string
String() string
}
// Immutable (i.e. persistent) associative array
const childCount = 8
const shiftSize = 3
type tree struct {
count int
hash uint64 // hash of the key (used for tree balancing)
key string
value Any
children [childCount]*tree
}
var nilMap = &tree{}
// Recursively set nilMap's subtrees to point at itself.
// This eliminates all nil pointers in the map structure.
// All map nodes are created by cloning this structure so
// they avoid the problem too.
func init() {
for i := range nilMap.children {
nilMap.children[i] = nilMap
}
}
// NewMap allocates a new, persistent map from strings to values of
// any type.
// This is currently implemented as a path-copying binary tree.
func NewMap() Map {
return nilMap
}
func (self *tree) IsNil() bool {
return self == nilMap
}
// clone returns an exact duplicate of a tree node
func (self *tree) clone() *tree {
var m tree
m = *self
return &m
}
// constants for FNV-1a hash algorithm
const (
offset64 uint64 = 14695981039346656037
prime64 uint64 = 1099511628211
)
// hashKey returns a hash code for a given string
func hashKey(key string) uint64 {
hash := offset64
for _, codepoint := range key {
hash ^= uint64(codepoint)
hash *= prime64
}
return hash
}
// Set returns a new map similar to this one but with key and value
// associated. If the key didn't exist, it's created; otherwise, the
// associated value is changed.
func (self *tree) Set(key string, value Any) Map {
hash := hashKey(key)
return setLowLevel(self, hash, hash, key, value)
}
func setLowLevel(self *tree, partialHash, hash uint64, key string, value Any) *tree {
if self.IsNil() { // an empty tree is easy
m := self.clone()
m.count = 1
m.hash = hash
m.key = key
m.value = value
return m
}
if hash != self.hash {
m := self.clone()
i := partialHash % childCount
m.children[i] = setLowLevel(self.children[i], partialHash>>shiftSize, hash, key, value)
recalculateCount(m)
return m
}
// replacing a key's previous value
m := self.clone()
m.value = value
return m
}
// modifies a map by recalculating its key count based on the counts
// of its subtrees
func recalculateCount(m *tree) {
count := 0
for _, t := range m.children {
count += t.Size()
}
m.count = count + 1 // add one to count ourself
}
func (m *tree) Delete(key string) Map {
hash := hashKey(key)
newMap, _ := deleteLowLevel(m, hash, hash)
return newMap
}
func deleteLowLevel(self *tree, partialHash, hash uint64) (*tree, bool) {
// empty trees are easy
if self.IsNil() {
return self, false
}
if hash != self.hash {
i := partialHash % childCount
child, found := deleteLowLevel(self.children[i], partialHash>>shiftSize, hash)
if !found {
return self, false
}
newMap := self.clone()
newMap.children[i] = child
recalculateCount(newMap)
return newMap, true // ? this wasn't in the original code
}
// we must delete our own node
if self.isLeaf() { // we have no children
return nilMap, true
}
/*
if self.subtreeCount() == 1 { // only one subtree
for _, t := range self.children {
if t != nilMap {
return t, true
}
}
panic("Tree with 1 subtree actually had no subtrees")
}
*/
// find a node to replace us
i := -1
size := -1
for j, t := range self.children {
if t.Size() > size {
i = j
size = t.Size()
}
}
// make chosen leaf smaller
replacement, child := self.children[i].deleteLeftmost()
newMap := replacement.clone()
for j := range self.children {
if j == i {
newMap.children[j] = child
} else {
newMap.children[j] = self.children[j]
}
}
recalculateCount(newMap)
return newMap, true
}
// delete the leftmost node in a tree returning the node that
// was deleted and the tree left over after its deletion
func (m *tree) deleteLeftmost() (*tree, *tree) {
if m.isLeaf() {
return m, nilMap
}
for i, t := range m.children {
if t != nilMap {
deleted, child := t.deleteLeftmost()
newMap := m.clone()
newMap.children[i] = child
recalculateCount(newMap)
return deleted, newMap
}
}
panic("Tree isn't a leaf but also had no children. How does that happen?")
}
// isLeaf returns true if this is a leaf node
func (m *tree) isLeaf() bool {
return m.Size() == 1
}
// returns the number of child subtrees we have
func (m *tree) subtreeCount() int {
count := 0
for _, t := range m.children {
if t != nilMap {
count++
}
}
return count
}
func (m *tree) Lookup(key string) (Any, bool) {
hash := hashKey(key)
return lookupLowLevel(m, hash, hash)
}
func lookupLowLevel(self *tree, partialHash, hash uint64) (Any, bool) {
if self.IsNil() { // an empty tree is easy
return nil, false
}
if hash != self.hash {
i := partialHash % childCount
return lookupLowLevel(self.children[i], partialHash>>shiftSize, hash)
}
// we found it
return self.value, true
}
func (m *tree) Size() int {
return m.count
}
func (m *tree) ForEach(f func(key string, val Any)) {
if m.IsNil() {
return
}
// ourself
f(m.key, m.value)
// children
for _, t := range m.children {
if t != nilMap {
t.ForEach(f)
}
}
}
func (m *tree) Keys() []string {
keys := make([]string, m.Size())
i := 0
m.ForEach(func(k string, v Any) {
keys[i] = k
i++
})
return keys
}
// make it easier to display maps for debugging
func (m *tree) String() string {
keys := m.Keys()
buf := bytes.NewBufferString("{")
for _, key := range keys {
val, _ := m.Lookup(key)
fmt.Fprintf(buf, "%s: %s, ", key, val)
}
fmt.Fprintf(buf, "}\n")
return buf.String()
}